8/15/22, 9:33 AM XML Writing with XMLTemplater

Technical Forums (/s/forums) Knowledge Base (/s/knowledge-base) Ideas (/s/bridea/acideasULD__bi Qo

< EME Desktop
(/S/Topic/0TO4Q000000QL9UWAG/Fme-...

XML Writing with XMLTemplater

®© Aug 3, 2022 « Knowledge

Product Type
FME Desktop

FME Version
2022.0

Tutorial: Tutorial: Getting Started with XML (/s/article/tutorial-getting-started-with-xml) | Previous: How to Read XSD-Driven XML (/s/article/How-to-read-XSD-
Driven-XML) | Next: How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer (/s/article/XSD-Driven-XML)

Introduction

XML is a form of structured text that is commonly used in open standards and exchange formats. It is also frequently encountered in web and messaging
applications. Being able to convert data to XML is an important capability of FME. This article covers FME’s approach to writing XML and includes a basic
example to help you get started. It assumes some understanding of basic FME and XML concepts. For example, the term ‘element’ in XML can relate to either a
feature or an attribute in FME terms, depending on how the XML document is interpreted. See EME Approach to XML (/s/article/tutorial-fme-approach-to-

xml) for more background.

Writing XML

FME uses a template approach to writing XML. The XML document structure is placed in or referenced by an XMLTemplater transformer. Then fme:get-attribute
functions are placed within the template at the locations where you want feature attribute values to be merged into the document. This functions much like a
mail merge operation, where a letter template receives name and address values from each record to dynamically generate customized messages.

XML documents can be generated one per feature such as for dataset metadata. Or root and sub-templates can be used to model a document that has one root
with multiple child elements based on a multi-record dataset. The XML document structure can be generated from an XSD using the XMLSampleGenerator or
obtained from a sample XML output document. Then element values are replaced with FME field values using fme:get-attribute functions where we want the
content to be driven by the source data. The XML that is produced by XMLTemplater is stored in a single _result attribute that can then be validated and
formatted with the XMLValidator and XMLFormatter transformers. In this exercise, we use sample XML to seed the template and will leave validation and
formatting to later exercises.

Typically the final output is written to disk using the Text File writer since the XML result attribute is just a large text field. The XML writer is not often used since
it does not yet support reading schema from XSD. There are special cases where the XML writer is beneficial, such as using fragment mode to write very large

XML datasets. This advanced approach allows XML fragments to be written as they are received rather than building a buffer of the entire document before

https://community.safe.com/s/article/xml-writing-with-xmltemplater 112

8/15/22, 9:33 AM

writing as is the case with the Text File writer.

Content Overview

e Part 1: Writing One XML Record
o Part 2: Writing Multiple XML Records

Step-by-step Instructions

Part 1: Writing One XML Record

The following exercise shows how to take a single record fed into an XMLTemplater template, and generate a basic XML document that matches the structure

found in safe_building_demo.xml.

1. Open FME Workbench

Open FME Workbench and start with a blank workspace. Drag and drop the attached source building.csv file, which is available from the Files section of this

article. Click on the Parameters button and then change the Feature Type Name(s) to From File Name(s), this will make it easier to distinguish between the two

XML Writing with XMLTemplater

CSVfiles. There are no other parameters to set since we are planning on writing to a text-based file.

T Add Reader

Reader

Format: | C5V (Comma Separated Value)

Coord. System: | [nk

Dataset: [uments\safeProjects WML\GS-XML XML Writing\Data\puilding. csv

Workflow Options

. =
(®) Individual Feature Types E:

Help =

¥ Fields

Advanced
e,

2. Add an XMLTemplater

The first step for converting this to XML is to generate the root element. To create the XML template, we need to copy the contents from the root object of an
example of the type of XML file that we would like to generate - in this case, the root from safe_building_demo.xml.

Add an XMLTemplater transformer to the canvas and connect the CSV source building feature type to it. Open the XMLTemplater parameters and click the

¥ Dataset Parameters

Feature Type Name(s): |From File Name(s) ~ |

1/—"

Delimiter Character: | auto ~ ‘
Field Names Line: | 1 ~ ‘

Data Start Line: |2 ‘

= e

i E-» CSV (Comma Separated Value) Param

rs x

From Format Name
From File Name(s) *

ellipsis for Template to open the ROOT Template Expression dialog. Paste in the following:

https://community.safe.com/s/article/xml-writing-with-xmltemplater

2012

8/15/22, 9:33 AM

<?xml version="1.0"?>
<Dataset xmlns="http://www.safe.com"> (http://www.safe.com">);
<Building id="Building">
<Address>street address</Address>
<City>city</City>
<Province>BC</Province>
<Country>Canada</Country>
<Location>
<Longitude>0</Longitude>
<Latitude>@</Latitude>
</Location>
</Building>
</Dataset>

XML Writing with XMLTemplater

Transformer

Transformer Mame: !XMLTemplaber |

Group Sub-Features By: | lo 1tem

Root Template

Port Source Template

ROOT Expression ~ E >

[5ub Template
' [Geometry Template
Parameters

Validate Attribute/Template Names: | Yes M e
Result Attribute: i_result : hd
Write XML Header: | Yes |

Help {’i Presets » 0K Cancel

3 XKMLTemplater Parameters *

3.Add a Logger

Add a Logger transformer after the XMLTemplater transformer and then run the workspace. Scroll up to view the XML in the Translation Log. Notice that the
template has written out the output that is within the _result field, which is the same as the template we just added.

What we really want is to merge the values from the input CSV record into the template before we write the XML.

97 2020-01-20 11:13:53]|
*_result' has wvalue

98 <DaToeor Omins="http:

0.7| 0.0|INFORM|Attribute (encoded: UTF-8)
*<?2xml wersion="1.0" encoding="UTF-8"7?>
www.safe.com">

59 <Building id="Building">

100 <Address>»street address</Address>
101 <Cityrocity</City>

102 <Province>BC</Province:>

103 <Country>Canada</Country>

104 <Location>

105 <Longitude>0</Longitude>
106 <Latitude>0</Latitude>
107 </Location>

108 </Building>

108 </Dataset>'

4. Modify the Template

To merge the values from the CSV into the template, we need to modify the template. Open up the XMLTemplater, click on the ellipsis to edit ROOT, then click on

the contents of each element we want to merge values into, and then click on the attribute we want to merge values from.
This should insert the attribute function associated with the attribute we selected ({fme:get-attribute("Building_id")} etc) into the location of the template

where we positioned the cursor. Remember to keep the quotes around the building attribute.

https://community.safe.com/s/article/xml-writing-with-xmltemplater

3/12

8/15/22, 9:33 AM

XML Writing with XMLTemplater

ROQT Template Expression

* FME Feature Attributes

b

<?xml vers ="1.0"7?>

@ Address <Dataset xmlns= tp://www.safe.com™>
4 Buiding id |\ <Building id="[TERLET">
@ City <Address>street address</Address>
4 Country <City>city</City>
@ Latitude <Province>BC</Province>
< ROOT Template Expression x
@
> xq |V FMEFeature Attributes <?xml version="1.8"7?>
> xq @ Address <Da
> Pu 41 Building_id
> Pri Q@ City
> FM @ Country <City>city</City>
> FM @ Latitude <Province>BC</Province>
> st 4 Longitude <Country>Canada</Country>
L2 Mg € Province <Location>
H{ (> XQuery Functions <Longitude>B</Longitude>
> XQuery Geometry Functions <Latitude>B</Latitude>
> Published Parameters </Location>
» Private Parameters </Building>
» FME Parameters < /Dataset>
» FME Feature Functions
> Sfring Functions
> Math Functions i 24
Help - Cptions ¥ Ln 3, Col 53 Generate... Cancel

Once you have done this for all the available attributes you should have a ROOT template that looks like this:

<?xml version="1.0"?>

<Dataset xmlns="http://www.safe.com"> (http://www.safe.com">);
<Building id="{fme:get-attribute("Building_id")}">
<Address>{fme:get-attribute("Address")}</Address>
<City>{fme:get-attribute("City")}</City>

<Province>{fme:get-attribute("Province")}</Province>

<Country>{fme:get-attribute("Country")}</Country>

<Location>

<Longitude>{fme:get-attribute("Longitude")}</Longitude>

<Latitude>{fme:get-attribute("Latitude")}</Latitude>

</Location>

</Building>

</Dataset>

You can also copy and paste the above text to save time.

5. Add a Writer

We can now write our data out to a text file. Add a new writer to the canvas and set the Format to Text File. Browse to a location to save the file and name it

building.xml. You may have to switch the Save as Type to All Files (*).

=) Add Writer

Writer

Format: | TextFile

Dataset: BProjects\WML\GS-XMLMLWriting'puiding.xmi | ... | &) [+

Add Feature Type(s)

Help =

Same 35 source g |

Feature Type Definition: | Mot applicable for this format

oK

Cancel

Open the parameters, and then set the output MIME type to text/xml. This can be important for displaying the XML correctly in some viewers such as web

https://community.safe.com/s/article/xml-writing-with-xmltemplater

4/12

8/15/22, 9:33 AM XML Writing with XMLTemplater

browsers.

w | Text File Parameters =

Writer Parameters

Overwrite Existing File: |Yes »

File Contents
Line Termination: | System ~
Write Last Line Terminator: |Yes ~
Character Encoding: | UTF-8 ~
‘Write UTF Byte Order Mark: | Yes ~

FME Server Parameters

MIVE Type: | text/xml * ~
Help {3 Presets ¥ Cancel

Click OK to complete creating the writer and then connect it to the XMLTemplater transformer. You can delete the Logger if you wish.

One final step before we can run the workspace is to change the Result Attribute in the XMLTemplater from _result to text_line_data. Changing this attribute

allows the XML to be understood by the Text File writer.

& KMLTernplater Parameters X
Transformer
Transformer Mame: IXMLTempIater |
Group Sub-Features By: |1 -
Foot Template
Port Source Template
ROOT Expression ~ | <%l version="1.0"7> .., |] e
+ [sub Templats
» [] Geometry Template
Parameters
Validate Attribute/Template Names: | Yes | |
Result Attribute: [text_ine_dats <iipmmmm | =
Write XML Header: | Yes v
Heip {f‘i Presets » Cancel

6. Run the Workspace
Run the workspace and examine the resulting building_output.xml output. See how these values are merged into the XML document structure. You should see

the following output. Note how the fme:get-attribute("") functions have been replaced by the feature attribute values:

<?xml version="1.0" encoding="UTF-8"?>
<Dataset xmlns="http://www.safe.com"> (http://www.safe.com">);
<Building id="Surrey Head Office">
<Address>7445 132 St.</Address>
<City>Surrey</City>
<Province>BC</Province>
<Country>Canada</Country>
<Location>
<Longitude>-122.860</Longitude>
<Latitude>49.138</Latitude>
</Location>
</Building>

</Dataset>

https://community.safe.com/s/article/xml-writing-with-xmltemplater

5/12

8/15/22, 9:33 AM XML Writing with XMLTemplater

You can view the output data in Visual Preview, the written text file, or the Log File if you still have the Logger attached.

Visual Preview g X
s DHED »
Table
| text_line v | | Columns...
i text_line_data
| 1
i 2 <Dataset xmlns="http://www.safe.com”>
3 <Building id="5urrey Head Office">
4 <Address> 7443 132 5t < /Address>
5 <Clity=Surrey</City>
|6 <Province=BC=/Province>
7 <Country>Canada</Country=
8 <Location>
9 <Longitudes -122.860</Longitude>
10 <Latitude>48.138</L atitude>
11 </Location>
12 </Building >
13 </Dataset>
|Q in | any column ~ | 1selected [13 row(s)

7. Save the Workspace

Save the workspace as we will be using the same workspace in Part 2.

Part 2: Writing Multiple XML Records

The following exercise shows how to take the workspace from Part 1 and add multiple child elements based on input records using an XMLTemplater
subtemplate.

Going back to our original task, we want to use FME to generate XML content that matches the structure found in safe_building_demo.xml. We generated the

root content in example Part 1, so the next step is to generate the Room elements.

1. Open the Previous Workspace

Open up the workspace that you created from Part 1, or download the WritingXML-Part1-Complete.fmwt completed workspace.

@)> building

[XMLTemp{ater '% I» text_line

“(Root
P omput

Log;ge i
4 Logged

2. Edit the XMLTemplater
Open up the XMLTemplater and enable Sub Template. Click on the plus sign (+) to add a new sub template.

https://community.safe.com/s/article/xml-writing-with-xmltemplater 6/12

8/15/22, 9:33 AM XML Writing with XMLTemplater

3 KMLTemplater Parameters *

Transformer

Transformer Mame: IXMLTemplaber |

Group Sub-Features By: (Mo

| =
Port Source Template
ROOT Expression ~ | <Twml version="1.0"7> .., S
EErsee |)
i Port Source Template

» [] Geometry Template

Parameters
Validate Attribute Template Names: | Yes w| tw
Result Attribute: |text line_data bt
\Write XML Header: |Yes v w
Help {3 Presets ¥ OK Cancel

As before, we start the template with a single example instance or element of the object we want to generate. In this case, we need an example of the Room
element, which we can get from the first room in safe_building_demo.xml:

<Room id="Admin_100">
<Name>Reception</Name>
<Category>Admin</Category>
<Area units="m2">12</Area>

</Room>

Click on the ellipsis for the sub template and then copy and paste the above XML. Then click OK twice to save the change to the XMLTemplater. You will notice a

new input port on the XMLTemplater called ‘SUB’. We need to connect the Room input features to this in order to have the fields we need available to the
XMLTemplater on the feature schema.

3. Add Another Reader

We will need to read in the Room features before we can connect it to our XMLTemplater. Add another CSV reader and browse to the downloaded Rooms.csv.

Click on the Parameters button and then change the Feature Type Name(s) to From File Name(s). Click OK twice to add the reader. Once the reader has been
added, connect it to the SUB input port on the XMLTemplater.

XMLTemplater 4ot b text_line 4”‘%

.b raoms @”*—/_(i - -Logger & e
P Logged =

4. Modify the XMLTemplater Sub Template

Now that the room feature type is connected, we can replace the values with the values we read from the input CSV file. Open the XMLTemplater and modify the
sub template, by clicking on each of the attributes. This should yield a sub template that looks like this:

https://community.safe.com/s/article/xml-writing-with-xmltemplater 712

8/15/22, 9:33 AM XML Writing with XMLTemplater

<Room id="{fme:get-attribute("Room.id (http://Room.id)")}">
<Name>{fme:get-attribute("Name")}</Name>
<Category>{fme:get-attribute("Category")}</Category>
<Area units="{fme:get-attribute("Area.units")}">
{fme:get-attribute("Area")}</Area>

</Room>

5. Modify the ROOT Template
To complete the XMLTemplater configuration, we need to tell the root template to call the sub template. This is done using the fme:process-features("SUB")

function. Add this to your root template so that the Room child elements are inserted at the end of the Building parent object.

<?xml version="1.0"?>

<Dataset xmlns="http://www.safe.com"> (http://www.safe.com">);

<Building id="{fme:get-attribute("Building_id")}">

<Address>{fme:get-attribute("Address")}</Address>

<City>{fme:get-attribute("City")}</City>

<Province>{fme:get-attribute("Province")}</Province>

<Country>{fme:get-attribute("Country")}</Country>

<Location>
<Longitude>{fme:get-attribute("Longitude")}</Longitude>
<Latitude>{fme:get-attribute("Latitude")}</Latitude>

</Location>

{fme:process-features("SUB")}

</Building>
</Dataset>
ROOT Template Expression X

~ FME Feature Attributes n||<Dataset xmlns="http://www.safe.com"> ~

@ Address <Building id="{fme:get-attribute("Building id"}}">

4 Area <Address>{fme:get-attribute("Address")}</Address>

@ Area.units <City>{fme:get-attribute("City")}</City>

4 Building_id <Province>{fme:get-attribute("Province")}</Province>

4@ Category <Country>{fme:get-attribute("Country")}</Country>

4@ City <Location>

@ Country <lLongitude>{fme:get-attribute("Longitude")}</Longitude>

@ Latitude <Latitude>{fme:get-attribute("Latitude")}</Latitude>

@ Longitude </Location>

& N e

@ Province </Building>

4 Roem.id </Dataset>
» Sub Templates

g Z L4

e >

Help = Options ¥ Ln 12, Col 9 Generate... Cancel

6. Add an XMLFormatter

Finally, it’s a good idea to format our XML before writing to disk. This makes it a lot easier to review our output and troubleshoot any problems, and has the
added bonus of catching syntax errors since only valid XML can be formatted.

Add an XMLFormatter transformer after the XMLTemplater. Set the Attribute with XML text to text_line_data. Set the Attribute to contain XML Output to
text_line_data as well. Leave the rest of the settings with their default values (Formatting type listed under Formatting Options should be Pretty-Print XML).

https://community.safe.com/s/article/xml-writing-with-xmltemplater

8/12

8/15/22, 9:33 AM XML Writing with XMLTemplater

% XMLFormatter Parameters x

Transformer Name: |XM LFormatter

XML Input
AML Input: | Attribute Specifying XML Text o M i
Attribute With XML Text: | €0 text line_data s o |¥
XML Filename =25 -
~ Formatting Options

Formatting Type: Preﬁy-PrintXML# Vi B

Whitespace Handling: | Preserve all whitespace ok Wi
Eiternal Schema: - B
Indent Size: |1]
Replace Tabs with Spaces: No gt M
Indent Text: No dt [
» XML Clean-up
AML Output
AML Qutput Type: | Attribute il [
Attribute to contain XML output: |text_line_data h v
AML Output File: ==
Output Encoding: | Unicode 8-bit (utf-8) v [

Error and Warning List Name: |_xml_grror |

Help {69 Presets ~ Cancel

7. Connect the XMLFormatter

Connect the XMLFormatter transformer to the Text File writer. If you still have your Logger transformer, move it to the Failed output port on the XMLFormatter.

Once everything is connected, run the workspace. Your output should appear as below. Note the multiple Room elements that are inserted inside the Building

object after the Location element:

https://community.safe.com/s/article/xml-writing-with-xmltemplater 9/12

8/15/22, 9:33 AM XML Writing with XMLTemplater

<?xml version="1.0" encoding="UTF-8"?>
<Dataset xmlns="http://www.safe.com"> (http://www.safe.com">);
<Building id="Surrey Head Office">

<Address>7445 132 St.</Address>

<City>Surrey</City>

<Province>BC</Province>

<Country>Canada</Country>

<Location>
<Longitude>-122.860</Longitude>
<Latitude>49.138</Latitude>

</Location>

<Room id="Admin_100">
<Name>Reception</Name>
<Category>Admin</Category>
<Area units="m2">12</Area>

</Room>

<Room id="Sales_101">
<Name>Sales Office</Name>
<Category>Sales</Category>
<Area units="m2">20</Area>

</Room>

<Room id="Meet_102">
<Name>Meeting Room</Name>
<Category>Meetings</Category>
<Area units="m2">25</Area>

</Room>

</Building>

</Dataset>

The completed workspace is shown below after a run. Note the XMLTemplater has one input feature for the root Building element, three input features for the

Room elements, and one output feature for the combined XML document’s output.

text_line

Rnot —{nput
b P :f/’ﬁiii Logger T
P Oumut P Fa Ied » Logged =

Continue to the next article: How to Consume and Produce XML using Application Schemas with the XSD-
Driven XML Writer (/s/article/XSD-Driven-XML)

=:—~ [XML‘I’emplater 0.‘,=){MLFormatter 4\;] /_' b

@) building

Data Attribution

Data created in-house by Safe Software Inc. (http://www.safe.com),

First Published Date
7/29/2020, 12:16 AM

Last Published Date
8/3/2022, 9:45 PM

https://community.safe.com/s/article/xml-writing-with-xmltemplater 10/12

8/15/22, 9:33 AM XML Writing with XMLTemplater
Transformation FME Desktop
(/s/topic/0TO4Q000000... (/s/topic/0TO4Q000000...

Sort by:

Latest Posts w Y~ c;

0 LizAtSafe (/s/profile/0050c00000CeGVOAAN) (Employee) published a new version of this Knowledge.
August 3, 2022 at 9:45 PM (/s/feed/0D54Q00009ggOspSAE),

1y Like ® Comment

@ trentatsafe (/s/profile/005a000000CdnWnAAJ) (Employee) published a new version of this Knowledge.
July 29,2022 at 2:00 PM (/s/feed/0D54Q00009fWXFISAE)

1view

1y Like ® Comment

Follow

2a. XML Writing with the XMLTemplater
h Aug3,2022 » T1KB » zip

View All
(/s/relatedlist/kal4Q000001DWy3QAG/AttachedContentDocuments).
Related Articles
XML Writing to Custom Application Schemas - XMLTemplater - Basic Example (/s/article/xml-writing-to-custom-application-schemas-xmltempl)
Working with Geodatabase Metadata: Writing/Updating Metadata (/s/article/working-with-geodatabase-metadata-writing-to-xml)
XML FAQ: Reading and Writing XML (/s/article/xml-fag-reading-and-writing-xml)
Harvesting and writing ISO19115 XML Metadata (/s/article/harvesting-and-writing-is019115-xml-metadata)
Writing JSON with the JSONTemplater (/s/article/json-writing-with-jsontemplater)
‘
Getting Started Ideas Feedback
(.-/s/topic/0TO4Q000000QKioWAG/welcofa¢s/bridea/acideasULT brildea ¢/00B: AUV HEY | LkoFWpziDYaWQKL78)

https://community.safe.com/s/article/xml-writing-with-xmltemplater 11/12

8/15/22, 9:33 AM XML Writing with XMLTemplater

Forums (../s/forums/). Groups
- Knowledge Base (../s/knowledge-base/) (../s/group/CollaborationGroup/00Ba000000A0BxXJEAV)
Support (../s/support/),
SAFE SOFTWARE®
(https://safe.com)
Register / Log In (/s/login/)
L 4 in @ © Safe Software Inc | Legal (https://www.safe.com/legal/).
(httpthittpbittesuthgisfstdrnimmbtfasniiibng e sbtineet/))

Land Acknowledgement —

Safe Software respectfully acknowledges that we live, learn and work on the traditional and unceded territories of the Kwantlen, Katzie, and Semiahmoo First Nations.

https://community.safe.com/s/article/xml-writing-with-xmltemplater 12/12

